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Abstract

We propose a measure of the dependence of a parameter estimate on specific features of the data. The
measure can be computed at negligible cost even for computationally difficult models. It can be inter-
preted as a measure of sensitivity to model misspecification. The measure delivers satisfactory intuitions
for pen-and-paper examples. We apply the measure to recent empirical papers in industrial organization.

1 Introduction

An estimator is a mapping from data to parameters of interest. Knowing the form of this mapping—how

the parameters change as the data vary along particular dimensions—is valuable, as it provides intuition

for the workings of the estimator and the role of underlying assumptions. It is often difficult to interrogate

an estimator’s behavior directly, however, as many interesting econometric models are computationally

expensive to estimate.

In this paper, we formulate a measure of the sensitivity of an estimator to specific features of the data that

can be approximated at little or no cost even for computationally difficult models. We show that our measure

matches common intuitions in well-understood cases and can be interpreted as a measure of sensitivity to

model misspecification. We apply our measure to two recent empirical papers in industrial organization,

where it delivers useful and precise intuitions about the behavior of the estimators.
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Bester, Raj Chetty, Tim Conley, Ron Goettler, Brett Gordon, Phil Haile, Christian Hansen, Matt Taddy, E. Glen Weyl, and seminar
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University of Chicago Booth School of Business, and the National Science Foundation. E-mail: gentzkow@ChicagoBooth.edu,
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Throughout the paper we consider the following abstract setting. A researcher computes an estimate θ̂

of some economic parameters with true value θ0. The researcher also computes a vector of statistics γ̂ that

summarize the data. These may be the moments used in estimating θ̂ in a GMM procedure, descriptive

statistics such as means or variances, or estimates of the parameters of an auxiliary model. The statistics θ̂

and γ̂ are jointly asymptotically normal, and θ̂ is consistent for θ0.

We define the sensitivity of θ̂ to γ̂ as the expected coefficient from a regression of θ̂ on γ̂ in data drawn

from the asymptotic distribution. Sensitivity measures how θ̂ is related to the elements of γ̂ across alternative

realizations of the data.

In the special case in which θ̂ is fully determined by γ̂ , sensitivity corresponds to the derivative of θ̂ with

respect to γ̂ at the asymptotic mean of γ̂ . If θ̂ depends only on a subset of elements of γ̂ , then only elements

of that subset will have nonzero sensitivity. Moreover, if θ̂ is connected to γ̂ through a set of moment

conditions, sensitivity to γ̂ is equivalent to sensitivity to small perturbations to the corresponding moment

conditions. In this sense, our measure simultaneously captures both sensitivity to the data and sensitivity to

model misspecification.

Our measure delivers appropriate intuitions for linear models. For example, in a regression of y on two

orthogonal covariates x1 and x2, it implies that the coefficient on x1 is sensitive to the covariance between

y and x2 only to the extent that x1 and x2 are correlated. In a two-stage least squares regression with

one endogenous variable x and two orthogonal instruments z1 and z2, it implies that the sensitivity of the

coefficient on x to a single-instrument IV estimate is proportional to the instrument’s strength in the first-

stage regression.

Our measure can be readily applied to computationally expensive nonlinear models. When γ̂ are the

moments used to estimate θ̂ , a consistent estimator of sensitivity can be obtained through transformations

of objects typically used to compute the asymptotic variance of θ̂ . When γ̂ is some other statistic not

directly involved in estimation of θ̂ , sensitivity can be estimated via an OLS regression of empirical influence

components, which are in turn available at little or no cost for a wide class of estimators.

We apply our measure to Goettler and Gordon’s (2011) study of the effect of competition from AMD

on Intel’s incentive to invest in R&D. Goettler and Gordon’s (2011) model is economically rich and compu-

tationally difficult, yet it is trivial to measure their estimator’s sensitivity to empirical moments. Estimated

sensitivity provides quantitative grounding for Goettler and Gordon’s (2011) discussion of the empirical

identification of their model.

We also apply our measure to Gentzkow et al.’s (2013) model of newspaper demand with multiple

readership.

An important limitation of our formal approach is that, because we focus on properties of the asymp-

totic distribution, the notion of sensitivity that we consider is intrinsically local. The approximations that

we work with have the same mechanics and hence the same limitations as those commonly used to com-

pute asymptotic variances. Generalizing our approach to more global exploration of model properties is

conceptually straightforward but may be computationally expensive. We provide some guidance on how a

researcher might minimize computational costs in practice.

A second limitation is that the units of sensitivity are contingent on the units of γ̂ . We provide a normal-

2



ization that serves as a useful default for most practical applications but acknowledge that the appropriate

scaling of sensitivity may be model-specific.

Our paper contributes mainly to two literatures in economics. The first is an applied literature using

structural models for empirical inference. It is common in such papers to provide a heuristic discussion

of a model’s “empirical identification”—how the model’s parameters are related to intuitive features of the

data—sometimes including a descriptive or reference model.1 Our sensitivity measure allows researchers

to make precise, quantitative statements about the empirical determinants of structural parameters and their

connection to useful descriptive statistics.

The second is a methodological conversation about the appropriate role of structural economic models

in inference. At the center of this conversation is a perceived tradeoff between the credibility of a model’s

economic assumptions and the transparency of its mapping from data to parameters.2 Our sensitivity mea-

sure makes this tradeoff shallower by permitting a precise characterization of the dependence of an estimate

on intuitive features of the data and on modeling assumptions.3

Our sensitivity measure complements the “sufficient statistics” approach, in which answers to questions

of interest are posed as functions of empirical objects rather than structural parameters (Chetty 2009; Einav

et al. 2010; Jaffe and Weyl forthcoming). Our sensitivity measure correctly identifies cases in which only

a subset of empirical moments affect a given parameter. Our measure is typically less expensive to obtain

than a sufficient statistics representation, though the resulting quantitative measure is less general than the

theoretical results typically offered in the sufficient statistics approach.

Our measure facilitates traditional sensitivity analysis (Leamer 1983) by showing how data map into

parameters and by showing which of a set of identifying assumptions matters most for a given parameter.

In this sense our paper complements recent research on inference in the presence of possibly misspecified

exclusion restrictions (Conley et al. 2012; Nevo and Rosen 2012).

Our work is closely related to the large literature on sensitivity analysis for scientific models (Sobol

1993, Saltelli et al. 2008). Linear regression of model outputs on model inputs is a standard tool for model

interrogation in the physical sciences. Our primary contribution is to show that the asymptotic properties

of common estimators used in economics make it possible to perform such an analysis without repeatedly

re-estimating or simulating the model, thus sparing substantial computational expense.

The remainder of the paper is organized as follows. Section 2 defines our measure. Section 3 discusses

its properties and interpretation, and section 4 shows how to estimate sensitivity. Section 5 applies the mea-

sure to pen-and-paper examples. Section 6 compares our approach to an alternative based on the sensitivity

of moments to parameters rather than the sensitivity of parameters to moments. Section 7 applies the mea-

1For example, Cohen and Einav (2007) devote a section of their paper to “provid[ing] intuition for which features of the data
allow [them] to identify particular parameters of the model.” Crawford and Yurukoglu (2012) note that “one may casually think of
[a set of empirical moments] as ’empirically identifying’ [a set of related parameters].” Berry, Levinsohn and Pakes (2004) present
a mix of formal results and intuition to characterize the role of different empirical moments in their analysis. Nevo (2001) presents
analysis of a homogeneous logit model as a “useful tool in getting a feel for the data.”

2Heckman (2010) writes that “The often complex computational methods that are required to implement [structural estimation]
make it less transparent.” Angrist and Pischke (2010) write that “in [Nevo’s (2000)] framework, it’s hard to see precisely which
features of the data drive the ultimate results.”

3In this sense our measure exploits the fact that structural models often “make the relationship between the economic model
and the estimating equations transparent” (Pakes 2003).
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sure to two empirical papers in industrial organization. Section 8 concludes with a discussion of how to

generalize the measure so that it is not local to a particular dataset.

2 Measure of Sensitivity

An econometrician possesses a sample of size n. She computes (i) an estimate θ̂ of a parameter θ and (ii)

an auxiliary statistic γ̂ . It is helpful in some cases to think of θ̂ as a scalar and γ̂ as a vector, but we do not

restrict attention to this case.

We assume that

(1)
√

n

(
θ̂ −θ0

γ̂− γ0

)
d

→ N (0,Σ) ,

where θ0 is the true value of parameter θ , γ0 is some constant, and Σ is finite. In what follows statistical

operators (expectations, variances) are with respect to the asymptotic distribution except where stated.

It follows that the conditional expectation of θ̂ given γ̂ is linear. Let Σγγ and Σθγ denote the submatrices

of Σ corresponding to the variance of γ̂ and the covariance of θ̂ and γ̂ respectively. Then,

(2) E
(
θ̂ −θ0|γ̂

)
= ΣθγΣ

−1
γγ (γ̂− γ0) .

Definition. The sensitivity of θ̂ to γ̂ is

Λ = ΣθγΣ
−1
γγ .

Our measure of sensitivity Λ is the matrix relating the expected value of θ̂ to γ̂ . This is the expected

coefficient from a regression of θ̂ on γ̂ across repeated draws from their joint asymptotic distribution. An

element of Λ is the effect of changing a single element of γ̂ on the expected value of a particular parameter,

holding constant the other elements of γ̂ .

Because the units of γ̂ may differ across its elements, it is often useful to normalize Λ. Let Λi j be a

typical element of Λ corresponding to the sensitivity of θ̂i to γ̂ j. We will call Λ̃i j = Λi j

√
Var(γ̂ j)/Var

(
θ̂i
)

the scaled sensitivity. Scaled sensitivity measures how much a one-standard-deviation change in γ̂ j affects

the expected value of θ̂i, fixing other elements of γ̂ j, in units of the asymptotic standard deviation of θ̂i.

In general the appropriate normalization will depend on the economic application, but this one provides a

sensible default.

Special Cases

To illustrate the properties of our measure, it is helpful to consider several specific classes of estimators. We

follow Newey and McFadden’s (1994) notation throughout.

Definition. We will say that θ̂ is a minimum distance estimator (MDE) if we can write

θ̂ = argmin
θ∈Θ

ĝn (θ)
′Ŵgĝn (θ)(3)
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where ĝn (θ) is a function of parameters and data and the weight matrix Ŵg is positive semi-definite, as is its

probability limit Wg.

Except where stated we will assume that (i) θ̂
p→ θ0, (ii) ĝn (θ) is continuously differentiable in θ with

a gradient Ĝ(θ) that converges uniformly in probability to some continuous G(θ) with G = G(θ0), (iii) the

limit θ0 is interior to the compact set Θ, (iv) the matrix (G′WG) is nonsingular, and (v) the statistic ĝn (θ0)

is asymptotically normal with mean 0 and variance Ωgg. Under these conditions an MDE is asymptotically

normal with mean θ0 (Newey and McFadden, Theorem 3.2).

It is often useful to consider the case where the statistics γ̂ are the empirical moments.

Definition. Λ is the sensitivity to moments if θ̂ is an MDE and γ̂ = ĝn (θ0).

We will often make use of the exactly identified linear instrumental variables model to build intuition.

Example. θ̂ is a linear instrumental variables estimator (IV) if it is an MDE with Ŵg = I and ĝn (θ) =
1
n (z
′ (y− xθ)) where z is an n× k array of instruments, x is an n× k array of regressors, and y is an n× 1

vector of outcomes.

3 Interpretations of Sensitivity

3.1 Model Misspecification

Although we have written Λ as a measure of sensitivity to data, it is also a measure of sensitivity to assump-

tions. To see this, suppose that θ̂ is an MDE, but that the model is misspecified in that ĝn (θ0) has asymptotic

mean ε in a neighborhood of 0. Define θε so that ĝn (θε)
p→ 0. Then if θ̂

p→ θε ∈ int(Θ), θ̂ is asymptotically

normal with bias b(ε). Let B be the gradient of b(ε) with respect to ε at ε = 0. The value B measures the

sensitivity of the bias of θ̂ to a small perturbation of the moment conditions. It is straightforward to show

that B = Λ where Λ is the sensitivity to moments.

If θ̂ is an IV, then 1
n (z
′ (y− xθ))

p→ ε implies that θ̂
p→ θ0 +Λε . That is, the bias b(ε) = Λε , where Λ is

the sensitivity and ε is the asymptotic covariance between the instruments and the error term. A researcher

can therefore use Λ to evaluate the credibility of the estimates of θ̂ as a function of her priors over the

credibility of each exclusion restriction.

In the case of an overidentified model an alternative route to evidence on sensitivity to misspecification

is to re-estimate the model dropping a suspicious moment condition. This approach has a close relationship

to Λ. Suppose only the jth moment is misspecified, i.e. εk = 0∀k 6= j. Let θ̂∼ j be the estimate that solves

equation (3) excluding the jth component of ĝn (θ). Assume that the model is overidentified in the sense

that θ̂∼ j→ θ0. Then the derivative of the asymptotic mean of
(
θ̂ − θ̂∼ j

)
with respect to ε j is the jth column

of Λ.
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3.2 Almost Sufficient Statistics

Our measure is useful in identifying cases in which a subset of data elements are sufficient to recover

θ̂ .4 Observe that if θ̂ = f (γ̂) for some continuously differentiable function f () with derivatives F (), then

Λ = F (γ0). An immediate implication is that if f () can be written as a function of a subset of the elements

of γ̂ , then Λ assigns a coefficient of zero to all elements of γ̂ not in the subset.

If θ̂ is an MDE and Λ is the sensitivity to moments, this result says that Λ will communicate which

moments contribute to a particular parameter. Suppose for example that θ̂ is an IV. Suppose that
(1

n z′x
)

is

diagonal, i.e. each instrument is correlated with one and only one regressor. Then the ith instrument can be

thought of as sufficient for θ̂i, in the sense that θ̂i can be written as a function of the ith moment condition

alone.

A similar logic applies when θ̂ cannot be written as a function of γ̂ . Define the sufficiency of γ̂ for an

element of θ̂ as

(4) ∆ =
Var
(
E
(
θ̂ −θ0|γ̂

))
Var
(
θ̂ −θ0

) .

The value ∆ ∈ [0,1] is the probability limit of the R2 of a regression of θ̂ on γ̂ across repeated draws form

their joint asymptotic distribution, as the number of draws grows large. If θ̂ and γ̂ are asymptotically

independent, then ∆ = 0. If θ̂ = f (γ̂), then ∆ = 1.

When ∆ is close to 1, γ̂ is “almost sufficient” for θ̂ in the sense that, asymptotically, knowing γ̂ allows

the econometrician to predict θ̂ with little error. In such a case, if Λ reveals that θ̂ is meaningfully sensitive

only to a subset of the elements of γ̂ , that subset can be thought of as almost sufficient.

As a simple example, consider the case of estimating the mean θ of an i.i.d. scalar random variable.

Let γ̂ denote a vector of means of independent samples j of size φ jn with ∑ j φ j = 1. Then the efficient

MDE θ̂ = Φγ̂ where Φ is a vector whose jth element is φ j. It follows that sensitivity Λ = Φ and ∆ = 1.

The sufficiency of any given element γ̂ j is φ j, i.e. a given element γ̂ j is almost sufficient for θ̂ if sample j

contains the majority of the data.

3.3 Value of Information

From equation (2), it is immediate that Λ2
i j is the partial derivative of the variance in E

(
θ̂i|γ̂
)

with respect to

the variance of γ̂ j. In this sense, Λ captures not only the impact of γ̂ on θ̂ , but also the impact of uncertainty

about γ0 on uncertainty about θ0. In the special case where Λ is sensitivity to moments, it shows how the

standard error on a given parameter estimate varies with the precision of each moment.

To give this a more concrete interpretation, consider a decision-maker who observes γ̂ but not θ̂ . The

decision-maker submits a guess for θ0i and pays a quadratic penalty E(θi−θ0i)
2. If the decision-maker

chooses θi = E
(
θ̂i|γ̂
)

as her guess, the derivative of her loss with respect to the variance of γ̂ j is Λ2
i j.

Suppose that θ̂ is an MDE and Λ is the sensitivity to moments. Suppose that the moments ĝn (θ0)

are asymptotically independent so that Ωgg is diagonal, and that the decision-maker can influence the data

4We follow Chetty (2009) in borrowing the term sufficient from statistics with apologies for its abuse.
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collection process to improve the precision of a given moment holding all else constant. Then the value of a

reduction in the variance of the jth moment is given by Λ2
i j.

4 Computing Sensitivity

In this section we show that consistent estimators for sensitivity Λ are typically readily available and inex-

pensive to compute even for computationally difficult models. We focus on the case in which θ̂ is obtained

as an MDE, a class that encompasses generalized method of moments (GMM), maximum likelihood (MLE),

and classical minimum distance (CMD).

Begin with the case in which Λ is the sensitivity to moments. It is straightforward to show that Λ =(
G
′
WgG

)−1
G
′
Wg.

By assumption the researcher possesses a consistent estimate of Wg, namely Ŵg. The sample analogue

Ĝ = Ĝ
(
θ̂
)

is a consistent estimate of G and is typically already in hand to compute the asymptotic variance

of θ̂ .5 Therefore in typical applications computing an estimate of Λ imposes no additional computational

burden once the asymptotic variance of the estimator has been computed.

In the more general case in which Λ is not sensitivity to moments, the most convenient way to estimate

Λ depends on how γ̂ is obtained. As a general framework we assume that γ̂ is an MDE with analogues

m̂n (θ), M̂ and Ŵm of ĝn (θ), Ĝ and Ŵg, respectively.

An important special case is where both θ̂ and γ̂ are estimated via GMM (Hansen 1982). Then ĝn (θ) =
1
n ∑

n
i=1 g(zi,θ) and m̂n (θ) =

1
n ∑

n
i=1 m(zi,γ) for i.i.d. data zi and functions g(z,θ) and m(z,θ) satisfying

E(g(z,θ0)) = E(m(z,γ0)) = 0. Let g̃i =
(
Ĝ′ŴgĜ

)−1
Ĝ′Ŵgg

(
zi, θ̂

)
and define m̃i analogously. Then a con-

sistent estimator for Λ is obtained via a regression of g̃i on m̃i.6 The intuition for this result is that g̃i and m̃i

are plug-in estimators for the influence of observation i, a measure of the observation’s effect on the value

of the estimator (Hampel et al. 1986; Ronchetti and Trojani 2001). A regression of g̃i on m̃i thus recovers

how the influence of an observation on γ̂ relates to its influence on θ̂ , and hence how γ̂ and θ̂ are related

under the data-generating process.

Because many estimators (e.g., MLE, OLS, 2SLS) can be formulated as GMM, the case above is general

enough to accommodate most applications of practical interest. However it is worth noting that a convenient

procedure will often be available even when a GMM representation is not. Recall that Λ = ΣθγΣ−1
γγ . A plug-

in estimator of Σ̂γγ of Σγγ will typically be available. What remains is to estimate Σθγ , which is a function

of G, M, Wg, Wm and the asymptotic covariance Ωgm of ĝn (θ0) and m̂n (γ0). Estimators of all but Ωgm are

in hand if one has calculated Σ̂γγ . In the case of CMD, it is common to use a bootstrap to estimate Ωgg; in

such cases the same bootstrap can often be used to estimate Ωgm.

5Asymptotically, Var
(
θ̂
)
=
(
G′WgG

)−1 G′WgΩggWgG
(
G′WgG

)−1. This variance is typically estimated using a plug-in esti-
mator with components Ŵg and Ĝ.

6More precisely, a regression of g̃i on m̃i yields coefficients

Λ̂ =

(
1
n

n

∑
i=1

m̃′im̃i

)−1(
1
n

n

∑
i=1

m̃′ig̃i

)

where Λ̂
p→ Λ.
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5 Example: Linear Regression

Here we use several special cases of linear instrumental variables to build intuition. For simplicity, we

assume throughout that all variables have mean zero.

Begin with the case of an OLS regression with two right-hand side variables (k = 2 and z = x). The two

moments are then the sample covariance of y and x1 and the sample covariance of y and x2. Intuitively, the

second moment should affect θ̂1 only to the extent that x2 is correlated with x1. If x2 and x1 are independent,

the estimate θ̂1 should not be sensitive to the covariance between y and x2. By contrast if small changes in

x2 predict large changes in x1, then for given covariance of y and x1, changes in the covariance of y and x2

should make a large difference to the estimate θ̂1.

Our measure of sensitivity matches these intuitions. If Λ is the sensitivity to moments, its first row is

(5)
[

1
Var(x1)−Cov(x1,βx2)

,− β

Var(x1)−Cov(x1,βx2)

]
,

where β is the coefficient from a univariate regression of x1 on x2. The denominators of the two terms are

the same so, as expected, the relative sensitivity to the two covariances scales directly with β .

The intuition is similar in the case of two-stage least squares with two endogenous regressors and two

instruments (k = 2, z 6= x, dim(x) = 2). The first row of Λ is the same as in equation (5), with β replaced

by the coefficient from a univariate IV regression of x1 on x2 instrumenting for x2 with z2. The sample

covariance of y and z2 will be relatively important for determining θ̂1 to the extent that the IV estimates

imply a strong causal effect of x2 on x1. If x1 is strongly correlated with x2, but orthogonal to z2, ĝ2 will

play no role in determining θ̂1.

Consider next the case of an overidentified model with one endogneous regressor and multiple instru-

ments (k ≥ 2, z 6= x, dim(x) = 1). Assume that the k instruments z are asymptotically independent with unit

variance. Let θ̂ be the two-stage least squares (2SLS) estimate. Let γ̂ be the vector whose ith element is the

ith IV estimate, i.e. the estimate of θ based on the ith instrument only. Let β̂ =
(1

n z′z
)−1 (1

n z′x
)

be the first

stage coefficients and let β = plim
(

β̂

)
. Then Λ is a row vector whose ith element is β 2

i /∑β 2
j . That is, the

sensitivity of the 2SLS estimate to a given IV estimate is proportional to the strength of the first stage for

the corresponding instrument.

If some instruments are endogenous, then E
(
θ̂ −θ0

)
= ΛE(γ̂−θ0), so Λ measures the extent to which

the bias in a given element of γ̂ translates into bias in the 2SLS estimator. If we instead define γ̂ = 1
n z′ε ,

then Λ’s ith element is βi/∑ j β 2
j , and E

(
θ̂ −θ0

)
= ΛE(γ̂). In this last case, Λ coincides with the matrix

A that Conley, Hansen and Rossi (2012) define in order to perform inference for the 2SLS estimator in the

presence of uncertainty about the exogeneity of the instrument.

Finally, consider an example in which the sample statistics of interest γ̂ are not the moments used in

estimation. Suppose k = 1 and z = x. Suppose that x is correlated with a variable v and a researcher is

concerned that v may affect y, thus calling into question the exogeneity of x. The researcher wishes to know

the sensitivity of the OLS estimator θ̂ to such endogeneity.

Let x1 denote the orthogonal projection of x on v and let x2 = x− x1 denote its residual. Let γ̂ =

(γ̂1, γ̂2) be the vector of OLS coefficients from regressions of y on x1 and x2, respectively. Then Λ =
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(
plim( 1

n x′1x1)
plim( 1

n x′x)
,

plim( 1
n x′2x2)

plim( 1
n x′x)

)′
. That is, the estimate θ̂ is sensitive to the “bad” variation in x (that is corre-

lated with v) to the extent that this constitutes a large share of the variance in x. If the researcher includes v

as a control in the regression, then Λ = (1,0)′, i.e. the covariance between x2 and y no longer influences θ̂ .

6 Sensitivity and its Inverse

Define the matrix Γ so that E
(
γ̂− γ0|θ̂

)
= Γ

(
θ̂ −θ0

)
. If γ̂ is sufficient for θ̂ , then ΛΓ = I. In this sense Γ

is the inverse of Λ: rather than measuring the sensitivity of parameters to data, it measures the sensitivity of

data to parameters.

The objects Γ and Λ are equally easy to estimate, and in some cases they communicate very similar

intuitions. For example, if statistic γ̂i is sufficient for parameter θ̂i for all i, then Λ and Γ are both diagonal.

That is, parameter θ̂i is sensitive only to statistic γ̂i, and vice versa.

We focus on Λ because Γ may in general provide misleading intuitions about the empirical determinants

of the parameters. One reason for this is the role of weights in estimation. If θ̂ is an MDE, then Γ = G

and (recall) Λ =
(

G
′
WgG

)−1
G
′
Wg. That is, Γ does not depend on weights Wg, so inspection of Γ may not

correctly capture which moments “drive” the estimates.

A deeper issue is that Γ does not generally inherit the sufficiency property of Λ that we highlight in

section 3. To see this consider the following abstract setting . Suppose that γ̂ are moments and that γ̂ and θ̂

are of length k. Suppose that θ̂1 is a nontrivial function of all moments, that θ̂2 is a function of all moments

except the first, and so on, with θ̂k a function of only the last moment. Then Λ and Γ are upper triangular,

with the rows of Λ and the columns of Γ corresponding to parameters. Taking Γ as a measure of sensitivity

of parameters to moments, we conclude that only the first moment is relevant for θ̂1 and that all moments

are relevant for θ̂k: exactly the opposite of the estimator’s actual mechanics.

As a simple example, suppose that θ̂ is an IV with k = 2 and z = x =
[

1 x
]

where we abuse notation

to define x as a vector and 1 as a vector of 1s. Let γ̂ =
[

Ê(y) ˆCov(y,x)
]′

consist of the sample mean of

y and the sample covariance of y and x. Then

Λ =
1

Var(x)

[
Var(x) −E(x)

0 1

]
.

That is, fixing the covariance of y and x, the coefficient on x is not sensitive to the mean of y. The covariance

is sufficient for the coefficient. The constant term, by contrast, is sensitive to both moments, and neither is

sufficient.

Consider the inverse:

Γ =

[
1 E(x)

0 Var(x)

]
.

Observe that changing either parameter changes E(y) as long as E(x) 6= 0. That is, while the mean of y does

not affect the coefficient on x, the coefficient on x does affect the mean. This might suggest a misleading

inference that the covariance is not sufficient for the coefficient.
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An analogous argument implies that Γ does not inherit Λ’s interpretation as a measure of the sensitivity

of the estimator to model misspecification. That a given parameter affects a given empirical moment’s

asymptotic mean does not imply that misspecification of the relevant moment condition will result in an

inconsistent estimate of the parameter.

7 Applications

7.1 Goettler and Gordon (2011)

We apply our measure to Goettler and Gordon’s (2011) study of the effect of competition from AMD on

Intel’s level of innovation. We compute scaled influence for all parameters using the weight matrix Ŵ and

the approximations Ĝ and Ω̂gg that Goettler and Gordon (2011) use to compute the asymptotic variance of

their parameters. Although Goettler and Gordon’s (2011) model is difficult to compute, scaled influence is

computationally costless once the asymptotic variance has been computed.

Figures 1 and 2 present scaled influence for Goettler and Gordon’s (2011) demand-side and supply-side

parameters, respectively. We visually separate moments important for identifying demand-side and supply-

side parameters based on Goettler and Gordon’s (2011) discussion of model identification. Appendix table

1 reports influence in matrix form.

Our findings are broadly consistent with the intuition that Goettler and Gordon (2011) provide about the

identification of their model. Below we discuss the identification of particular parameters in more detail in

light of our calculations.

Consider first the demand-side parameters in figure 1, about which Goettler and Gordon (2011) write:7

The demand-side parameters (price coefficient, quality coefficient, Intel fixed effect, and AMD

fixed effect) are primarily identified by the pricing moments, the Intel share equation moments,

and the mean ownership quality relative to the frontier quality. The pricing moments respond

sharply to changes in any of these four parameters. The market share equation is primarily

sensitive to quality coefficient and Intel fixed effect - AMD fixed effect. The mean upgrading

moment decreases if consumers upgrade more quickly and is akin to an outside share equation

that identifies the levels of the Intel fixed effect and the AMD fixed effect. We interpret the Intel

fixed effect as a hassle cost of upgrading one’s computer and Intel fixed effect - AMD fixed effect

as a brand effect.

We find that the price coefficient is primarily sensitive to the average prices of Intel and AMD. This is

intuitive because Goettler and Gordon (2011) have a direct measure of marginal cost. Given the assumption

of dynamically optimal pricing, the higher is the observed price, the less price-sensitive consumers are

estimated to be. The quality coefficient is primarily sensitive to the potential upgrade gains, a measure of

the difference between the average CPU quality of the computer stock and the frontier quality available.

Again, this is intuitive: the more sensitive consumers are to quality, the more often consumers will upgrade

their PCs and the smaller will be the gap between average and frontier quality.

7In this and the subsequent quote, we substitute phrases in italics for the mathematical symbols used in the original paper.

10



Consider next the supply-side parameters in figure 2, about which Goettler and Gordon (2011) write:

The supply-side parameters (Intel innovation efficiency, AMD innovation efficiency, and in-

novation spillover), which govern the investment process, are primarily identified by observed

innovation rates, quality differences, and investment levels. The investment efficiencies are cho-

sen such that the observed investment levels (per unit revenue) yield innovation at the observed

rates. The spillover parameter innovation spillover is chosen to match the mean difference in

quality across firms: a high spillover keeps the qualities similar.

We find that the innovation efficiencies are greatly affected by the observed innovation rates. AMD’s in-

vestment efficiency is also identified by the observed quality difference between Intel and AMD CPUs: the

more of a gap AMD allows, the greater is AMD’s inferred disadvantage in innovating.

7.2 Gentzkow et al. (2013)

We next apply our measure to Gentzkow et al.’s (2013) model of newspaper demand with multiple reader-

ship. In their model, both households and newspapers are either Republican or Democrat. Each household

has a preference for reading newspapers of its own type. Households may read multiple newspapers, and

newspapers are more substitutable if they are of the same party than if their parties differ. Gentzkow et al.

(2013) estimate this model using aggregate data on circulation in a set of small towns in 1924.

We focus our discussion on two parameters: the relative preference for own-type newspapers, and the

extent of substitutability of same-type newspapers. Gentzkow et al. (2013) argue that the parameter govern-

ing the relative preference for same-type newspapers is “identified by” the correlation between the relative

circulation of Republican newspapers and the share of households who vote Republican. They argue that

the parameter governing the extent of substitutability of same-type newspapers is identified by the extent to

which adding more Republican newspapers to the choice set disproportionately reduces demand for other

Republican papers.

In contrast to our analysis of Goettler and Gordon (2011), here we do not study sensitivity to the mo-

ments used to estimate Gentzkow et al.’s (2013) model. As the model is estimated via maximum likelihood,

the moments are first-order conditions with limited interpretability. Instead, we focus on the influence of a

set of descriptive statistics, namely the coefficients from a regression of the relative circulation of Republican

newspapers on the Republican share of the vote and the number of Republican and Democratic newspapers.

Although the formal model is nontrivial to estimate, computing influence is instantaneous.

Figure 3 presents our results graphically. Appendix table 2 presents our findings in matrix form.

The first plot in figure 3 shows that the structural parameter governing the relative preference for same-

type newspapers is highly sensitive to the coefficient from a regression of the relative circulation of Repub-

lican newspapers on the Republican share of the vote. This is in line with the discussion in Gentzkow et

al. (2013). The second plot shows that the structural parameter governing the substitutability of same-type

newspapers is sensitive to all regression coefficients to a similar extent. Intuitively, as the coefficient on the

number of Republican papers grows, this parameter shrinks, and the opposite happens for the coefficient on

the number of Democratic papers.
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Both parameters have a high sufficiency ∆, indicating that variation in these four regression parameters

is sufficient to explain the majority of the asymptotic variation in the structural parameters. This is striking

in light of the fact that the underlying structural model has many additional parameters, and the maximum

likelihood estimator is in principle exploiting much more information than can be captured in a simple

regression.

8 Extensions and Conclusions

We develop a measure Λ of the extent to which a given parameter is sensitive to a given feature of the data.

The measure is trivial to compute in common applications and is interpretable as a measure of sensitivity to

model misspecification.

An important limitation of our approach is that Λ is a local measure. It captures the way θ̂ varies with

small perturbations of γ̂ around its limiting value. Conceptually, relaxing this constraint is straightforward.

Consider the following exercise: (i) simulate or otherwise obtain data with dispersed values of γ̂ , (ii) estimate

θ̂ on each dataset, (iii) regress θ̂ on γ̂ across these datasets. Such a procedure delivers a “global Λ” as

compared to the “local Λ” we work with in this paper.

We focus on the local Λ precisely because repeated simulation and estimation is often costly. We can,

however, suggest approaches to minimizing this computational burden. First, for estimators whose cost of

execution scales well with the size of the dataset, a researcher might use small-scale simulations to obtain

the global Λ and to compare it to the local Λ. If the two are similar, this adds confidence to the use of the

local Λ for sensitivity analysis.

Second, for cases where simulation from the data-generating process is cheaper than estimation, a re-

searcher might simulate data from several possible values of θ and compute γ̂ on the simulated data. Then,

by regressing θ on γ̂ , one obtains a version of the global Λ that does not require repeated model estimation.

Another limitation to stress is that evaluating the relative sensitivity to different data features requires

comparing the units of different elements of γ̂ . The scaled measure we propose, Λ̃i j, may be natural in many

contexts, and has the advantage of being invariant to the units in which γ̂ and θ̂ are measured. In certain

applications, however, alternative approaches to scaling may be more appropriate. For example, an element

of γ̂ may be known with near statistical certainty, so that a one-standard-deviation change in its value is of

no economic significance. In such a case, a researcher may wish to scale Λ by some appropriate notion of

economic significance rather than by statistical precision.

12



References

Angrist, Joshua D. and Jörn-Steffen Pischke. 2010. The credibility revolution in empirical economics:

How better research design is taking the con out of econometrics. Journal of Economic Perspectives

24(2): 3–30.

Berry, Steven, James Levinsohn, and Ariel Pakes. 2004. Differentiated products demand systems from a

combination of micro and macro data: The new car market. Journal of Political Economy 112(1):

68-105.

Chetty, Raj. 2009. Sufficient statistics for welfare analysis: A bridge between structural and reduced-form

methods. Annual Review of Economics 1: 451-488.

Cohen, Alma and Liran Einav. 2007. Estimating risk preferences from deductible choice. American Eco-

nomic Review 97(3):745-788.

Conley, Timothy G., Christian B. Hansen, and Peter E. Rossi. 2012. Plausibly exogenous. Review of

Economics and Statistics 94(1): 260-272.

Crawford, Gregory S. and Ali Yurukoglu. 2012. The welfare effects of bundling in multichannel television

markets. American Economic Review 102(2): 643-685.

Einav, Liran, Amy Finkelstein, and Mark R. Cullen. 2010. Estimating welfare in insurance markets using

variation in prices. Quarterly Journal of Economics 75(3): 877-921.

Gentzkow, Matthew, Jesse Shapiro and Michael Sinkinson. 2013. Competition and ideological diversity:

Historical evidence from US newspapers. NBER Working Paper No. 18234.

Goettler, Ronald L. and Brett R. Gordon. 2011. Does AMD spur Intel to innovate more? Journal of Political

Economy 119(6): 1141-1200.

Hampel, Frank R., Elvezio M. Ronchetti, Peter J. Rosseeuw, and Werner A. Stahel. 1986. Robust statistics:

The approach based on influence functions. New York: Wiley-Interscience.

Hansen, Lars P. 1982. Large sample properties of generalized method of moments estimators. Econometrica

50(4): 1029-1054.

Heckman, James J. 2010. Building bridges between structural and program evaluation approaches to evalu-

ating policy. Journal of Economic Literature 48(2): 356-398.

Jaffe, Sonia and E. Glen Weyl. Forthcoming. The first-order approach to merger analysis. American

Economic Journal: Microeconomics.

Leamer, Edward E. 1983. Let’s take the con out of econometrics. American Economic Review 73(1): 31-43.

Nevo, Aviv. 2000. Mergers with differentiated products: The case of the ready-to-eat cereal industry. RAND

Journal of Economics 31(3): 395-442.

Nevo, Aviv. 2001. Measuring market power in the ready-to-eat cereal industry. Econometrica 69(2): 307-

342.

Nevo, Aviv and Adam M. Rosen. 2012. Identification with imperfect instruments. Review of Economics

and Statistics 94(3): 659-671.

Newey, Whitney K. and Daniel McFadden. 1994. Large sample estimation and hypothesis testing. In R.

Engle and D. McFadden (eds.), Handbook of Econometrics 4: pp. 2111-2245. Amsterdam: North-

Holland.

13



Pakes, Ariel. 2003. Common sense and simplicity in empirical industrial organization. Review of Industrial

Organization 23(3): 193-215.

Ronchetti, Elvezio and Fabio Trojani. 2001. Robust inference with GMM estimators. Journal of Economet-

rics 101(1): 37-69.

Saltelli, Andrea, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli,

Michaela Saisana, and Stefano Tarantola. 2008. Global sensitivity analysis: the primer. West

Sussex, UK: Wiley-Interscience, 2008.

Sobol, I. M. 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and

Computational Experiments 1(4): 407-414.

14



Fi
gu

re
1:

Sc
al

ed
se

ns
iti

vi
ty

fo
rd

em
an

d
pa

ra
m

et
er

s
in

G
oe

ttl
er

an
d

G
or

do
n

(2
01

1)

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (−

)

AMD price: In
tel_q − AMD_q (+

)

Average AMD price (−
)

Average Intel price (−
)

Intel price: In
tel_q − AMD_q (+

)

Intel price: In
tel_q − Avg_q (−

)

Intel share: C
onstant (+

)

Intel share: In
tel_q − AMD_q (+

)

Potential upgrade gains (−
)

AMD mean R&D / r
evenue (+

)

AMD mean innovation (+
)

Intel m
ean R&D / r

evenue (+
)

Intel m
ean innovation (+

)

Mean quality
 diff (

−)

Mean quality
 indicator (−

)

P
ric

e 
co

ef
fic

ie
nt

D
em

an
d

S
up

pl
y

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (+

)

AMD price: In
tel_q − AMD_q (+

)

Average AMD price (−
)

Average Intel price (+
)

Intel price: In
tel_q − AMD_q (+

)

Intel price: In
tel_q − Avg_q (+

)

Intel share: C
onstant (+

)

Intel share: In
tel_q − AMD_q (+

)

Potential upgrade gains (−
)

AMD mean R&D / r
evenue (+

)

AMD mean innovation (+
)

Intel m
ean R&D / r

evenue (+
)

Intel m
ean innovation (+

)

Mean quality
 diff (

−)

Mean quality
 indicator (−

)

Q
ua

lit
y 

co
ef

fic
ie

nt
D

em
an

d

S
up

pl
y

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (+

)

AMD price: In
tel_q − AMD_q (+

)

Average AMD price (+
)

Average Intel price (−
)

Intel price: In
tel_q − AMD_q (−

)

Intel price: In
tel_q − Avg_q (+

)

Intel share: C
onstant (+

)

Intel share: In
tel_q − AMD_q (−

)

Potential upgrade gains (−
)

AMD mean R&D / r
evenue (−

)

AMD mean innovation (−
)

Intel m
ean R&D / r

evenue (−
)

Intel m
ean innovation (+

)

Mean quality
 diff (

+)

Mean quality
 indicator (+

)

In
te

l f
ix

ed
 e

ffe
ct

D
em

an
d

S
up

pl
y

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (+

)

AMD price: In
tel_q − AMD_q (−

)

Average AMD price (+
)

Average Intel price (−
)

Intel price: In
tel_q − AMD_q (−

)

Intel price: In
tel_q − Avg_q (−

)

Intel share: C
onstant (−

)

Intel share: In
tel_q − AMD_q (−

)

Potential upgrade gains (−
)

AMD mean R&D / r
evenue (−

)

AMD mean innovation (−
)

Intel m
ean R&D / r

evenue (−
)

Intel m
ean innovation (+

)

Mean quality
 diff (

+)

Mean quality
 indicator (+

)

A
M

D
 fi

xe
d 

ef
fe

ct
D

em
an

d

S
up

pl
y

N
ot

es
:E

ac
h

pl
ot

sh
ow

s
th

e
ab

so
lu

te
va

lu
e

of
sc

al
ed

se
ns

iti
vi

ty
∣ ∣ Λ̃ ij∣ ∣

fo
ra

ll
m

om
en

ts
jf

or
a

gi
ve

n
pa

ra
m

et
er

i,
w

ith
th

e
si

gn
of

Λ̃
ij

gi
ve

n
in

pa
re

nt
he

se
s.

15



Fi
gu

re
2:

Sc
al

ed
se

ns
iti

vi
ty

fo
rs

up
pl

y
pa

ra
m

et
er

s
in

G
oe

ttl
er

an
d

G
or

do
n

(2
01

1)

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (+

)

AMD price: In
tel_q − AMD_q (+

)

Average AMD price (−
)

Average Intel price (−
)

Intel price: In
tel_q − AMD_q (+

)

Intel price: In
tel_q − Avg_q (−

)

Intel share: C
onstant (−

)

Intel share: In
tel_q − AMD_q (−

)

Potential upgrade gains (+
)

AMD mean R&D / r
evenue (−

)

AMD mean innovation (+
)

Intel m
ean R&D / r

evenue (−
)

Intel m
ean innovation (+

)

Mean quality
 diff (

+)

Mean quality
 indicator (+

)

In
te

l i
nn

ov
at

io
n 

ef
fic

ie
nc

y
D

em
an

d

S
up

pl
y

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (−

)

AMD price: In
tel_q − AMD_q (−

)

Average AMD price (+
)

Average Intel price (−
)

Intel price: In
tel_q − AMD_q (+

)

Intel price: In
tel_q − Avg_q (−

)

Intel share: C
onstant (+

)

Intel share: In
tel_q − AMD_q (−

)

Potential upgrade gains (+
)

AMD mean R&D / r
evenue (+

)

AMD mean innovation (+
)

Intel m
ean R&D / r

evenue (−
)

Intel m
ean innovation (+

)

Mean quality
 diff (

−)

Mean quality
 indicator (+

)

A
M

D
 in

no
va

tio
n 

ef
fic

ie
nc

y
D

em
an

d

S
up

pl
y

0.2.4.6.8
Scaled sensitivity

AMD price: A
MD_q − Avg_q (−

)

AMD price: In
tel_q − AMD_q (+

)

Average AMD price (−
)

Average Intel price (+
)

Intel price: In
tel_q − AMD_q (+

)

Intel price: In
tel_q − Avg_q (+

)

Intel share: C
onstant (−

)

Intel share: In
tel_q − AMD_q (+

)

Potential upgrade gains (−
)

AMD mean R&D / r
evenue (−

)

AMD mean innovation (−
)

Intel m
ean R&D / r

evenue (−
)

Intel m
ean innovation (−

)

Mean quality
 diff (

+)

Mean quality
 indicator (−

)

In
no

va
tio

n 
sp

ill
ov

er
D

em
an

d

S
up

pl
y

N
ot

es
:E

ac
h

pl
ot

sh
ow

s
th

e
ab

so
lu

te
va

lu
e

of
sc

al
ed

se
ns

iti
vi

ty
∣ ∣ Λ̃ ij∣ ∣

fo
ra

ll
m

om
en

ts
jf

or
a

gi
ve

n
pa

ra
m

et
er

i,
w

ith
th

e
si

gn
of

Λ̃
ij

gi
ve

n
in

pa
re

nt
he

se
s.

16



Fi
gu

re
3:

Sc
al

ed
se

ns
iti

vi
ty

fo
rs

el
ec

tp
ar

am
et

er
s

in
G

en
tz

ko
w

,S
ha

pi
ro

,a
nd

Si
nk

in
so

n
(2

01
3)

0.2.4.6.81
Scaled sensitivity

Constant (−
)

Number o
f D

emocratic papers available (+
)

Number o
f R

epublican papers available (−
)

Republican share of tw
o−party vote (+

)

S
uf

fic
ie

nc
y 

=
 0

.8
25

3
P

re
fe

re
nc

e 
fo

r 
ow

n−
ty

pe
 n

ew
sp

ap
er

0.01.02.03.04.05
Scaled sensitivity

Constant (+
)

Number o
f D

emocratic papers available (+
)

Number o
f R

epublican papers available (−
)

Republican share of tw
o−party vote (−

)

S
uf

fic
ie

nc
y 

=
 0

.9
12

6
S

ub
st

itu
ta

bi
lit

y 
of

 s
am

e−
ty

pe
 n

ew
sp

ap
er

N
ot

es
:E

ac
h

pl
ot

sh
ow

s
th

e
ab

so
lu

te
va

lu
e

of
sc

al
ed

se
ns

iti
vi

ty
∣ ∣ Λ̃ ij∣ ∣

fo
rs

ta
tis

tic
s

jf
or

a
gi

ve
n

pa
ra

m
et

er
i,

w
ith

th
e

si
gn

of
Λ̃

ij
gi

ve
n

in
pa

re
nt

he
se

s.
T

he
su

ffi
ci

en
cy

∆
fo

re
ac

h
pa

ra
m

et
er

is
sh

ow
n

ab
ov

e
th

e
pl

ot
.

17



Appendix Table 1: Scaled sensitivity for all parameters in Goettler and Gordon (2011)
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AMD price: AMD
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q
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q
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q
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Note: The table shows a matrix with elements corresponding to the absolute value of scaled sensitivity
∣∣Λ̃i j

∣∣ for
parameters i (in columns) and moments j (in rows).
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Appendix Table 2: Scaled sensitivity for Gentzkow, Shapiro and Sinkinson (2013)

Structural parameter
Coefficient from a regression of relative circulation Preference for Substitutability of
of Republican papers on: own-type newspaper same-type newspapers
Constant -0.2889 0.0172
Republican share of two-party vote 0.9247 -0.0445
Number of Republican papers available -0.0041 -0.0094
Number of Democratic papers available 0.0077 0.0103

Sufficiency 0.8253 0.9126

Note: The table shows a matrix with elements corresponding to scaled sensitivity Λ̃i j for parameters i (in columns)
and statistics j (in rows), along with sufficiency ∆.
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